|
| 1: |
|
eq(0,0) |
→ true |
| 2: |
|
eq(0,s(x)) |
→ false |
| 3: |
|
eq(s(x),0) |
→ false |
| 4: |
|
eq(s(x),s(y)) |
→ eq(x,y) |
| 5: |
|
le(0,y) |
→ true |
| 6: |
|
le(s(x),0) |
→ false |
| 7: |
|
le(s(x),s(y)) |
→ le(x,y) |
| 8: |
|
app(nil,y) |
→ y |
| 9: |
|
app(add(n,x),y) |
→ add(n,app(x,y)) |
| 10: |
|
min(add(n,nil)) |
→ n |
| 11: |
|
min(add(n,add(m,x))) |
→ if_min(le(n,m),add(n,add(m,x))) |
| 12: |
|
if_min(true,add(n,add(m,x))) |
→ min(add(n,x)) |
| 13: |
|
if_min(false,add(n,add(m,x))) |
→ min(add(m,x)) |
| 14: |
|
rm(n,nil) |
→ nil |
| 15: |
|
rm(n,add(m,x)) |
→ if_rm(eq(n,m),n,add(m,x)) |
| 16: |
|
if_rm(true,n,add(m,x)) |
→ rm(n,x) |
| 17: |
|
if_rm(false,n,add(m,x)) |
→ add(m,rm(n,x)) |
| 18: |
|
minsort(nil,nil) |
→ nil |
| 19: |
|
minsort(add(n,x),y) |
→ if_minsort(eq(n,min(add(n,x))),add(n,x),y) |
| 20: |
|
if_minsort(true,add(n,x),y) |
→ add(n,minsort(app(rm(n,x),y),nil)) |
| 21: |
|
if_minsort(false,add(n,x),y) |
→ minsort(x,add(n,y)) |
|
There are 18 dependency pairs:
|
| 22: |
|
EQ(s(x),s(y)) |
→ EQ(x,y) |
| 23: |
|
LE(s(x),s(y)) |
→ LE(x,y) |
| 24: |
|
APP(add(n,x),y) |
→ APP(x,y) |
| 25: |
|
MIN(add(n,add(m,x))) |
→ IF_MIN(le(n,m),add(n,add(m,x))) |
| 26: |
|
MIN(add(n,add(m,x))) |
→ LE(n,m) |
| 27: |
|
IF_MIN(true,add(n,add(m,x))) |
→ MIN(add(n,x)) |
| 28: |
|
IF_MIN(false,add(n,add(m,x))) |
→ MIN(add(m,x)) |
| 29: |
|
RM(n,add(m,x)) |
→ IF_RM(eq(n,m),n,add(m,x)) |
| 30: |
|
RM(n,add(m,x)) |
→ EQ(n,m) |
| 31: |
|
IF_RM(true,n,add(m,x)) |
→ RM(n,x) |
| 32: |
|
IF_RM(false,n,add(m,x)) |
→ RM(n,x) |
| 33: |
|
MINSORT(add(n,x),y) |
→ IF_MINSORT(eq(n,min(add(n,x))),add(n,x),y) |
| 34: |
|
MINSORT(add(n,x),y) |
→ EQ(n,min(add(n,x))) |
| 35: |
|
MINSORT(add(n,x),y) |
→ MIN(add(n,x)) |
| 36: |
|
IF_MINSORT(true,add(n,x),y) |
→ MINSORT(app(rm(n,x),y),nil) |
| 37: |
|
IF_MINSORT(true,add(n,x),y) |
→ APP(rm(n,x),y) |
| 38: |
|
IF_MINSORT(true,add(n,x),y) |
→ RM(n,x) |
| 39: |
|
IF_MINSORT(false,add(n,x),y) |
→ MINSORT(x,add(n,y)) |
|
The approximated dependency graph contains 6 SCCs:
{24},
{22},
{23},
{25,27,28},
{29,31,32}
and {33,36,39}.